FAForever Forums
    • Categories
    • Recent
    • Tags
    • Popular
    • Users
    • Groups
    • Login

    TMM Rating Allowance Needs to Use Ladder 1v1 Matching (or close to it)

    Scheduled Pinned Locked Moved General Discussion
    38 Posts 15 Posters 3.5k Views 1 Watching
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • BlackYpsB Offline
      BlackYps
      last edited by

      I don't have a lot of examples because I have just started making some, but here are a few for you:
      (Keep in mind that a game quality of 0.5 is the cutoff here for a game to be considered)

      A "Search" is a party of players that is searching for a game. the "pX" are the player names, so you can see how many players there are in the search. The number at the end is the average rating of that search party. The game quality uses the formula that I explained in my previous post.

      team a: [Search(['p12'], 842), Search(['p15'], 738), Search(['p1', 'p2'], 781)] cumulated rating: 3142   average rating: 785.5
      team b: [Search(['p11'], 745), Search(['p5', 'p6'], 788), Search(['p16'], 816)] cumulated rating: 3137   average rating: 784.25
      bonuses: 0.0 rating disparity: 5 -> fairness: 0.9916666666666667 deviation: 44.917806881013234 -> uniformity: 0.8502739770632892 -> game quality: 0.8431883605877618
      
      team a: [Search(['p5', 'p6'], 788), Search(['p16'], 816), Search(['p13'], 971)] cumulated rating: 3363   average rating: 840.75
      team b: [Search(['p1', 'p2'], 781), Search(['p12'], 842), Search(['p17'], 951)] cumulated rating: 3355   average rating: 838.75
      bonuses: 0.0 rating disparity: 8 -> fairness: 0.9866666666666667 deviation: 79.45399612354309 -> uniformity: 0.7351533462548563 -> game quality: 0.7253513016381249
      
      team a: [Search(['p3', 'p4'], 1004.5), Search(['p17'], 951), Search(['p16'], 816)] cumulated rating: 3776   average rating: 944
      team b: [Search(['p13'], 971), Search(['p12'], 842), Search(['p5', 'p6'], 788)] cumulated rating: 3389   average rating: 847.25
      bonuses: 0.0 rating disparity: 387 -> fairness: 0.355 deviation: 92.79134859996378 -> uniformity: 0.6906955046667874 -> game quality: 0.24519690415670953
      
      team a: [Search(['p7', 'p8', 'p9'], 1011.3333333333334), Search(['p12'], 842)] cumulated rating: 3876   average rating: 969
      team b: [Search(['p13'], 971), Search(['p3', 'p4'], 1004.5), Search(['p17'], 951)] cumulated rating: 3931   average rating: 982.75
      bonuses: 0.0 rating disparity: 55 -> fairness: 0.9083333333333333 deviation: 67.96035149261664 -> uniformity: 0.7734654950246113 -> game quality: 0.7025644913140219
      
      team a: [Search(['p7', 'p8', 'p9'], 1011.3333333333334), Search(['p11'], 745)] cumulated rating: 3779   average rating: 944.75
      team b: [Search(['p10'], 1047), Search(['p15'], 738), Search(['p14'], 1032), Search(['p13'], 971)] cumulated rating: 3788   average rating: 947
      bonuses: 0.0 rating disparity: 9 -> fairness: 0.985 deviation: 125.21026066181636 -> uniformity: 0.5826324644606121 -> game quality: 0.5738929774937029
      
      team a: [Search(['p7', 'p8', 'p9'], 925.3333333333334), Search(['p15'], 1328)] cumulated rating: 4104   average rating: 1026
      team b: [Search(['p13'], 1115), Search(['p16'], 1231), Search(['p3', 'p4'], 998)] cumulated rating: 4342   average rating: 1085.5
      bonuses: 0.0 rating disparity: 238 -> fairness: 0.6033333333333334 deviation: 152.77004778424336 -> uniformity: 0.4907665073858555 -> game quality: 0.2960957927894662
      
      team a: [Search(['p7', 'p8', 'p9'], 925.3333333333334), Search(['p13'], 1115)] cumulated rating: 3891   average rating: 972.75
      team b: [Search(['p3', 'p4'], 998), Search(['p5', 'p6'], 918.5)] cumulated rating: 3833   average rating: 958.25
      bonuses: 0.0 rating disparity: 58 -> fairness: 0.9033333333333333 deviation: 84.13976467758869 -> uniformity: 0.719534117741371 -> game quality: 0.6499791530263718
      
      team a: [Search(['p7', 'p8', 'p9'], 925.3333333333334), Search(['p12'], 846)] cumulated rating: 3622   average rating: 905.5
      team b: [Search(['p5', 'p6'], 918.5), Search(['p1', 'p2'], 810.5)] cumulated rating: 3458   average rating: 864.5
      bonuses: 0.0 rating disparity: 164 -> fairness: 0.7266666666666667 deviation: 79.85612061701971 -> uniformity: 0.733812931276601 -> game quality: 0.5332373967276633
      
      1 Reply Last reply Reply Quote 1
      • K Offline
        Katharsas
        last edited by

        I assume all players in that list have a newbie bonus of 0?
        Search(['p7', 'p8', 'p9'], 925.3333333333334) means those 3 players are in the queue together, and 925 is their average rating?

        Questions about algorithm:
        What is inside the match array?
        rating_imbalance = abs(match[0].cumulated_rating - match[1].cumulated_rating)
        What is match[0] / match[1] reffering to?
        Why is has_top_player() important and what does it do?

        BlackYpsB 1 Reply Last reply Reply Quote 0
        • FtXCommandoF Offline
          FtXCommando
          last edited by

          top_player is used in the matchmaking process already. It's defined as anybody with over 1600 mu. It's used to eliminate certain players/teams from consideration when the system is just trying to throw a new player into a game after a few failed queue intervals.

          1 Reply Last reply Reply Quote 0
          • BlackYpsB Offline
            BlackYps @Katharsas
            last edited by

            I assume all players in that list have a newbie bonus of 0?
            Search(['p7', 'p8', 'p9'], 925.3333333333334) means those 3 players are in the queue together, and 925 is their average rating?

            Yes to both.

            The match array just holds the two teams, so the rating imbalance is just the difference between the sum of the ratings of the two teams.

            As ftx explained a top player has >1600 mu.
            This way the newbie bonus gets only awarded if the team has no pro players. But now that I think about it, I am not sure anymore if this is a good idea.

            1 Reply Last reply Reply Quote 0
            • K Offline
              Katharsas
              last edited by Katharsas

              Okay, what does deviation = stats.pstdev(ratings) do?

              1 Reply Last reply Reply Quote 0
              • BlackYpsB Offline
                BlackYps
                last edited by

                This is from the python statistics module. It calculates the population standard deviation
                https://docs.python.org/3/library/statistics.html#statistics.pstdev
                https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/variance-standard-deviation-sample/a/population-and-sample-standard-deviation-review

                1 Reply Last reply Reply Quote 0
                • MoraxM Offline
                  Morax
                  last edited by

                  So guys, this is great and all (good work - seriously) but most people playing FAF do not understand nor have the time to translate the code to layman terms explanations. It would be really appreciated if some "as precise as possible" explanation was given when distributing information that shows rating brackets as a requisite for what they will experience while playing the game.

                  1 Reply Last reply Reply Quote 0
                  • BlackYpsB Offline
                    BlackYps
                    last edited by

                    I don't think I understand what you want to say. Are you talking about the map pools? The matchmaker won't use rating brackets at all. There will also be no further explanation of the matchmaker inner workings in the client. The end user just queues up and will automagically get some nice balanced games (hopefully).

                    1 Reply Last reply Reply Quote 0
                    • K Offline
                      Katharsas
                      last edited by

                      Ok i think the formula makes sense, except checking top_player. If there are a top player and a noob in the same team it will probably already create bad uniformity right?

                      However, for finding good parameters, i would have to code that formula up and try it with varying numbers, cannot really tell anything from your example calculations. So yeah i don't think you will get much use out of the forum for that^^

                      1 Reply Last reply Reply Quote 0
                      • S Offline
                        StormLantern Team Lead
                        last edited by

                        I didnt read the whole thing, but in my experience it can be frustrating when in tmm u play against two opponents that have a high rating difference as the death (or disconnect) of the lower rated opponent often means an auto loss for your team. If its is at all possible to still get consistent enough games when the maximum rating difference (between two teammates) is capped at say 400 or so, that would be a good change I think. But I suppose that would depend on the amount of players in que.

                        1 Reply Last reply Reply Quote 1
                        • MoraxM Morax referenced this topic on
                        • First post
                          Last post